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Classical theory of the molecule alignment in a laser field
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Abstract. In the classical mechanics framework the solution is given for the problem of the two-atomic
molecule alignment in a field of linearly polarised laser pulse. The numerical results are presented for the
Cl2 molecule, together with the analytical results in the limit of a very short and strong laser pulse. The
width of the angular distribution for molecular axes in field is demonstrated to depend on the radiation
intensity as S−1/4, the alignment along the polarisation direction is possible as well as in the transversal
direction. The analysis of some experimental data is given.

PACS. 33.90.+h Other topics in molecular properties and interactions with photons

1 Introduction

The effect of ionisational dissociation of molecules in a
strong laser field was discovered in a number of experi-
mental studies some years ago (see e.g. [1–3]). The analysis
of the anisotropy of angular distribution for the positive
ions has demonstrated that the alignment of molecules
along the laser polarisation direction can be one of possible
causes for such anisotropy [4,5]. Another possible cause is
the enhanced ionisation of aligned molecules [6–8]. A di-
rect evidence for strong-field alignment was demonstrated
in [9] where the stimulated Raman effect was observed in
naphthalen trimers.

It should be noted that the time-independent quantum
mechanical theory for the molecule orientation has long
been known. In particular, the transition from the rota-
tional spectrum of a free molecule to the pendular spec-
trum of a molecule in a laser field was discussed in [10].
These transitions are due to the librations of the molecu-
lar axis (determining the direction of the induced dipole
moment) about the direction of the electric vector of the
light wave. In this case the solution for the Schrödinger
equation may be written in terms of the spheroidal func-
tions, stretched or ablated, depending on the sign of the
dynamic polarisability of the molecule. The same result
has been recently derived in [11]. However, in most of the
experiments the short laser pulses were used with the du-
ration comparable or even less than the period of the free
molecular rotation. So the time-independent theory does
not hold for this case.

The numerical analysis of the time-dependent
Schrödinger equation for the simplest molecule H+

2 in the
linearly polarised laser pulse has been carried out and
some interesting results have been obtained in [12,13]. In
the reference [12], an asymmetry was predicted for the
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upward and downward emission of ions depending on the
relative phases of waves in a two-color laser field. A pos-
sibility for stabilisation of ions H+

2 has been discovered
in [13]. Unfortunately, the use of such approach to the de-
scription of more compound molecules involves essential
difficulties in calculations.

In this article the classical mechanics is used to de-
scribe the molecule alignment in field. The stimulated
Raman scattering of light with the transitions between the
molecule rotation levels according to the selection rules,
|∆J | ≤ 2, is the microscopic reason for the collisionless
alignment. Such transitions result in a preferable direc-
tion of the molecular axis (with the induced dipole mo-
ment along) which coincides with the polarisation direc-
tion of the linearly polarised field if the polarisability of
the molecule is positive or which is perpendicular to this
direction if the polarisability is negative. Evidently, it is
sufficient for the validity of the classical mechanics, that
the laser radiation spectrum width were larger than the
distance between the rotational levels. Then the stimu-
lated emission and absorption of photons (which for the
Raman processes have different energies) can be provided
by the photons of the incident laser radiation. This con-
dition fulfills in experiments we have discussed above.

The classical approach used for this problem in recent
papers [14–16], has enabled one to explain qualitatively
the experimental results of references [14–16], which were
obtained for CS2,CO2 molecules under the laser pulse
duration ∼ 35 ps. But when simultaneously treating the
alignment and dissociation, even the classical problem be-
comes exceedingly complicated. For instance, the angular
distribution dependence upon the important parameters
of the laser radiation (e.g. intensity and the pulse dura-
tion) was therefore not obtained for the “pure” alignment
in [14–16]. Bearing in mind the restrictions of the model,
where the molecule alignment is considered separately
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of the accompanying ionisation, one can hope, however,
that the results of this work will be helpful in the interpre-
tation of the experimental data. Concerning the descrip-
tion of the process with the help of the classical mechanics,
its advantages for understanding the behaviour of atoms
and molecules in a laser field have been demonstrated by
numerous authors (see, e.g. [17–19]).

The general equations are derived in the next section
which describe the motion of a rotator in a time-dependent
electromagnetic field. The equations of the motion are av-
eraged over the rapid oscillations of the laser field on its
carrier frequency. Therefore the temporal dependence of
the field in these equations is due to only the temporal
dependence of the laser pulse envelope. The validity of
such averaging for polar molecules in the absence of the
resonances1 is determined by the condition (2). For the
non-polar molecules such a condition is not derived by
now. Therefore, one cannot estimate the error arising due
to the averaging over the rapid field oscillations. Such esti-
mation could be obtained only in a more accurate theory
which should not use the averaging. The interaction of
the rotator with the field is caused by the dynamic po-
larisability of the molecule. The hyperpolarisabilities are
not taken into account. The validity of this approximation
can be estimated roughly: the laser field strength should
be much less than the atomic one. However, we hope that
the qualitative features of the alignment process can be
described adequately by the proposed theory even in the
case of high laser field strengths which are comparable
with the atomic field. The below comparison of the the-
ory with the experiment verifies this statement.

The results of numerical solution of equations derived
in such a way are presented in Section 3 for the molecule of
Cl2 as an example. The analytical study of the equations
of motion in the limit of a very strong field is carried out
in Section 4. In our study we consider the laser field as
strong if it exceeds some crucial value determined by the
inertia momentum of the molecule. Since this momentum
is proportional to the masses of nuclei and the atomic
field is determined by the electron mass, therefore this
crucial field is much less than the atomic one. Section 5
deals with analytical considerations of the problem in the
case when the alignment of molecules appears in the plane
perpendicular to the polarisation vector of the field. A
special form of the time dependence is used here for the
laser pulse envelope which enables us to derive a closed
expression for the angular distribution of molecules. The
discussion of the experimental data is given in the last
section.

2 Lagrange equation

Let the z-axis of the laboratory reference frame be di-
rected along the electric field vector of the linearly po-
larised laser wave, F (t) is the envelope of the electric vec-
tor in the laser pulse, ωl is the laser field frequency. Let

1 Alignment of molecules in resonant laser field was studied
in [20,21].

φ and θ to be the angles determining the orientation of
the 2-atomic molecule axis. Taking into account only the
terms quadratic to the field strength the potential energy
of the molecule, averaged over the field period 2π/ωl, takes
the form (cf. [22]):

U(θ, φ; t) = −1
4
F 2(t)[α‖(ωl) cos2 θ + α⊥(ωl) sin2 θ].

Here α‖,⊥ are the longitudinal and transversal dynamical
polarisabilities of the molecule in respect to its axis. In
this approximation the frequency of the laser radiation ωl

arises only in the components of the dynamic polarisability
α‖,⊥.

The Lagrange function determining the rotation of the
molecule in the field is (cf. [23,24]):

L(θ, φ; t) =
I

2
(φ̇2 sin2 θ + θ̇2)

+
F 2(t)

4
[α‖(ωl) cos2 θ + α⊥(ωl) sin2 θ], (1)

where I is the inertia momentum.
Deriving the Lagrange function (1) it was assumed

implicitly that the molecule is a homonuclear one. This
Lagrange function can be used for heteronuclear molecules
with a constant dipole momentum d, if the following con-
dition is satisfied

dF� ~ωl. (2)

This condition provides the elimination of the terms linear
to the field because of the rapid oscillations of the field
with the frequency ωl [25].

Since the φ coordinate is cyclic, the momentum pro-
jection onto the z-axis is conserved:

Mz = Iφ̇ sin2 θ. (3)

The molecular dynamics is determined by the Lagrange
equation, which with an account for the equation (3)
reads as

d2θ

dt2
=
M2
z

I2

cos θ
sin3 θ

− βF 2(t)
2I

sin θ cos θ,

β ≡ α‖ − α⊥. (4)

The numerical analysis of the equation (4) without the
first term in its right-hand side was given in [26].

For qualitative analysis of the problem we consider
firstly the time-independent limit supposing that the field
amplitude F does not depend on time. In this case the
energy integral corresponds to the equation (4)

E =
I

2
θ̇2 + U(θ),

U(θ) =
M2
z

2I sin2 θ
+

1
4
βF 2 sin2 θ. (5)

It is easy to see that the potential energy U(θ) has its
infinite maxima at θ = 0, π, if Mz 6= 0. The minimum
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of the free molecule potential energy corresponds to θ =
π/2. A free molecule axis oscillates harmonically about
this minimum:

cos θ =
(

1− M2
z

2IE0

)1/2

cosω0t

= sin γ cosω0t. (6)

Here γ is the angle between the total angular momentum
direction of the molecule M and the z-axis:Mz = M cos γ,
E0 = M2/2I, ω0 =

√
2E0/I is the frequency of free rota-

tions. Then

θ̇ = ω0
sinγ
sin θ

sin
[
arccos

(
cos θ
sin γ

)]
. (7)

With the field strength increase for β < 0, the minimum
at θ = π/2 deepens. It means that for β < 0 the molecules
will be aligned perpendicularly to the electric field. This
fact is physically clear since for β < 0 the energy of a
molecule oriented along field increases.

For β > 0 the bifurcation appears in the phase plane
of the system when the field strength increases: the equi-
librium state for θ = π/2 splits into two new equilib-
rium states and a saddle point with a two-loop separatrix
passing through. This behaviour of the system is caused
by the local potential energy maximum which appears at
θ = θmax ' π/2. The location of the minimum near θ ' 0
is determined by the relation

θmin =
(
M2
z

IβF 2

)1/4

, (8)

if the field is strong enough, so that

θmin � 1. (8′)

A similar minimum appears also near θ ' π. So, if the
energy of a molecule is

E <
M2
z

2I
+

1
4
βF 2,

then for β > 0 the molecules align along the field po-
larisation vector. The width of the angular distribution
smoothly depends on the field intensity, S = F 2, and on
the difference of polarisabilities, β, according to the equa-
tion (8), as (βS)−1/4. It should be however noted that
due to the maxima of the potential energy at θ = 0, π, the
angular distribution function for the molecular axes has
minima for θ = 0, π, if Mz 6= 0. These minima are due to
the conservation of the angular momentum components
along the linearly polarised field strength direction. They
are discussed below in detail.

The critical field strength at which the bifurcation oc-
curs for β > 0, is determined by the equation:

F = Fc ≡
[(

4E − 2M2
z /I
)
/β
]1/2

. (9)

When the relation (9) holds, the minimum of the free ro-
tation potential energy disappears and the maximum is
beginning to arise due to the field action. So the station-
ary point (9) corresponds to the “indifferent” equilibrium.

3 Dynamics of alignment

There are no difficulties for the numerical solution of equa-
tion (4). To obtain the angle distribution function P (θ)
the histograms of solutions θ(t) with the step ∼ 3◦ was
plotted with random initial values θ0, Mz and the initial
energy of a molecule E0. Since the quantity cos θ0 has a
simple (harmonic) temporal dependence (6), the distribu-
tion P (θ0) may be derived from the distribution for the
harmonic oscillator coordinate:

P (θ0) =
1
π

{
sin θ0(sin2 γ − cos2 θ0)−1/2, cos2 θ0 < sin2 γ,

0, cos2 θ0 ≥ sin2 γ.

(10)

The γ angle is supposed to have a uniform distribution:

P (γ) =
1
2

sin γ,

and the value θ̇0 is determined according to the equa-
tion (7). Because of the singularity of the function (10)
at sin2 γ = cos2 θ0, the averaging over γ, θ0 is carried out
with the use of the Gauss-Chebyshev algorithm [27].

Some results of calculations are presented in Figure 1
for the distribution P (θ) at different time moments after
the laser pulse have begun to act. The total number of
initial conditions for the equation (4) which were used for
plotting the curves of Figure 1 was about 50 000. The pa-
rameters of the molecule Cl2 studied in [28] were taken for
the numerical values of molecular parameters. The iner-
tia momentum of this molecule is I = 10−38 g cm2. The
static polarisability difference has been taken for the dif-
ference of the longitudinal and transversal polarisabilities
[29]: β = 2.6 × 10−24 cm3. The Gauss form was used for
the laser pulse:

F (t) ∼ exp(−t2/2τ2), τ = 100 fs,

with the power density of the flux of 1015 W/cm2. These
data correspond to the experimental setup described
in [28]. The initial energy of the molecule E0 has been
assumed to have a Boltzmann distribution with tempera-
ture 300 K. For comparison with experiment the angle θ
was considered in the range of −π/2 ≤ θ ≤ π/2. For t = 0
the width of the distribution function at the half-height
(without account for the central drop of the function P (θ))
is 36.5◦, that agrees satisfactorily with the experimental
value of 38◦ [28].

Of course, the quantitative agreement between the the-
ory and the experiment is not of great significance here,
because of the approximations used in deriving the equa-
tions of motion. However, it can be stated that the pro-
posed theory provides at least a correct qualitative inter-
pretation for the experimental results.

4 Analytical considerations in a very strong
field

To understand qualitatively the numerical results pre-
sented above, it is useful to consider the solution of equa-
tion (4) in a very strong field, the numerical estimation
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Fig. 1. Time dependence for the angular distribution of molecular axes. The molecular parameters are nearly those for the
molecule Cl2, τ = 100 fs, the peak intensity of radiation is 1015 W/cm2. The dashed line for t = −τ corresponds to the field-free
distribution of molecular axes P (θ0) = (1/2)| sin θ|. The dashed line for t = 0 is the asymptotic distribution function (19). The
hole at θ = 0 is due to the maximum of the molecular potential energy (5) at this point.

of which will be given below (Eq. (13)). In a very strong
field the oscillations of the molecular axis in the poten-
tial well with the minimum at the point (6) can be con-
sidered to have a rate essentially higher compared with
the variation of electric field amplitude. The replacement
sin θ → θ, cos θ → 1, is possible in equation (4) for this
case according to (8′), and the solution in the quasistatic
limit [24], may be written similarly to the well-known

quantum mechanical WKB-approximation:

θ2(t)=
1
ω(t)

{√
4M2

z

I2
+κ2+κ sin

[∫ t

t0

ω(t′)dt′+ϕ
]}

,

(11)

ω2(t) = 2βF 2(t)/I. (12)

This quasistatic approximation (11) is valid under the fol-
lowing condition:

ω(t)τ � 2π, (13)
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where τ is the pulse duration. Note that the frequency of
the molecular axes oscillations (12) does not depend on
the Mz value.

The constants κ, ϕ are to be found basing on contin-
uous transition between the values of θ(t0), θ̇(t0) deter-
mined by (11) on the one hand, and the same values for
a free molecular rotation on the other hand. The time
moment t0 for the matching procedure may be naturally
chosen according to the condition F (t0) ' Fc, Fc being
determined by (9) where E is considered equal to the ro-
tation energy of the free molecule. The formulae derived
in such a way are sufficiently complicated, so it is not
convenient to use them for the further analytical calcula-
tions. Therefore we restrict ourselves here to the case of
very short laser pulse with the duration lower than the
rotation period of the free molecule:

τ � 2π
√

I

2E0
· (14)

The value in the right-hand side of the inequality (14) for
the Cl2 molecule is 0.3 ns. When the inequality (14) holds,
the molecule position does not change during the field-on
time interval. Thus, the matching time moment t0 may be
taken so that the inequality

ω(t0)� ω0 (14′)

is satisfied. Then it is easy to see that the continuity of
θ(t0) may be provided for

κ = ω(t0)θ2(t0)� 2|Mz|/I = 2ω0| cosγ|,
ϕ ' 0, (15)

if of course, θ(t0) is not too small. Evidently, the small
values of θ(t0) occupy a small region in the set of initial
values, and the inequality (15) should be treated in this
sense. The continuity of θ̇(t0) may be provided by an ap-
propriate choice of the t0 value, since this value is not
determined exactly. The corresponding equation is

ω(t0) =
ω̇(t0)
ω(t0)

+ 2
θ̇(t0)
θ(t0)

· (16)

Under the inequality (14) the last term in the right-hand
side of (16) can be neglected. The corresponding results
become independent of θ̇(t0). This fact is completely clear
from the physical point of view. Indeed, for the short laser
pulses the initial angular distribution θ(t0) is “frosen” and
the variation of these angles caused by the initial velocities
θ̇(t0) becomes negligible.

Equation (16) without the last term in the right-hand
side should be considered as a transcendental equation
for t0. The numerical analysis demonstrates that the solu-
tions of this equation give the value for F (t0), exceeding
slightly the value of Fc. This situation is quite satisfactory
since the orientational interaction energy of the molecule
with radiation becomes equal to the energy of free rotation
beginning with the field value F = Fc. Let us consider a

numerical example. For the Cl2 molecule, in the field of in-
tensity 1015 W/cm2 the electric field amplitude equals the
value of Fc at the time moment tc = −2.2τ , and the time
moment corresponding to the solution of equation (16) is
t0 = −1.66τ . It is evident from Figure 1 that for such
values of t0 the initial angular distribution is unable in-
deed to change noticeably. The value of ω(t0)/ω0 > 800
enables the inequality (14′) to hold for the most part of
the angles θ(t0). Nevertheless, the value of the parameter
ω(0)τ ' 6.6 does not allow to judge about the validity of
inequality (13) which is thus the most restrictive one for
the theory presented here.

The use of the values of constants (15) in equation (11)
results in neglecting completely the quantity Mz. Thus
this approximation leads to the removal of the central
hole in the distribution function which has the width
∼ ω2

0 cos2 γ/ω2(t0) � 1. The corresponding formula has
the form:

θ2(t) =
ω(t0)θ2(t0)

ω(t)

{
1 + sin

[∫ t

t0

ω(t′)dt′
]}

.

Assuming the θ2(t) dependence to be harmonic, the dis-
tribution function may be written as:

P (θ) =
2ω(t)θ

πω(t0)θ2(t0)

{
1−

[
1− ω(t)θ2

ω(t0)θ2(t0)

]2
}−1/2

.

(17)

The values of θ in (17) should provide the subradical ex-
pression to be positive. Otherwise, P (θ) = 0 should be
taken.

Assuming the isotrope distribution for the quantity
θ(t0) in (17) and averaging over it, we obtain:

P (0 ≤ θ ≤ θmax) =
πL(s)(z)

2θmax
,

θmax ≡
π

2

√
2ω(t0)
ω(t)

, z ≡ θ/θmax,

L(s)(z) ≡ 2
π

∫ 1/z

1

sin(πxz/2)√
x2 − 1

dx

'
√

1− z2

(
1− π2

72
− π2z2

36

)
,

P (θmax < θ ≤ π/2) = 0. (18)

With account of the above approximation for the function
L(s)(z), the distribution (18) is occurred to be normalised
within a 2% inaccuracy. Assuming the angle θ to vary
in the [−θmax, θmax] range, the expression (18) may be
rewritten as follows:

P (−θmax ≤ θ ≤ θmax) =
π

4θmax

(
1− θ2

θ2
max

)1/2

×
(

1− π2

72
− π2

36
θ2

θ2
max

)
. (19)
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As it is evident, the distribution (19) depends on a sin-
gle parameter θmax, determining the distribution function
width. Similarly to the equilibrium position (8), θmax ∼
(βS)−1/4. The distribution (19) is shown on the Figure 1c
(dashed line) for the same values of the parameters that
were used in the previous section. A 15% discrepancy
between this function and the numerical calculations is
due to that these parameters have not yet reached their
asymptotic values.

5 Linear model for β < 0

As it was noted in Section 2, for β < 0, when the field is
on, the bifurcations do not appear. The minimum of the
free molecule potential energy θ = π/2 in the field is only
deepened without changing its position. It allows, within
some assumptions, to derive an analytical solution of the
problem.

In a strong field, for which the interaction energy ex-
ceeds essentially the free rotation energy, the first term in
the right-hand side of (4) may be neglected. To meet the
initial conditions describing the motion of a free molecule,
the inequality (14) should also be fulfilled. Thus this sec-
tion considers short laser pulses with high intensity.

It is convenient to take the potential energy minimum
for the reference point of the angle θ, using the following
substitution in (4):

θ = π/2− χ, χ ∈ [−π/2, π/2].

In addition, we linearise equation (4) in complete anal-
ogy with the linearisation of equation for the motion of a
classical pendulum [24]: sin θ→ 1, cos θ → χ:

d2χ

dt2
= −βF

2(t)
2I

χ. (20)

Equation (20) is linear and its analytical solution can be
derived if we take

F (t) = F0 sech(t/2τ) (21)

for the field envelope. The function (21) provides an ex-
ponential decrease of the radiation intensity for |t| � τ .
Note in this regard, that a similar dependence F (t) ∼
exp(−|t|/τ) was assumed for the radiation intensity in ref-
erence [12].

The general solution of (20) with the right-hand
side (21) may be written in terms of the Gauss hyper-
geometric functions [30]:

χ(t) = c1f
(−)(t) + c2f

(+)(t),

f (±)(t) = F

[
1 + a

2
,

1− a
2

; 1;
1
2

(
1± tanh

t

2τ

)]
,

a =
√

1 + 4Ω2
0τ

2, Ω2
0 = 2|β|F 2

0 /I, (22)

c1,2 being the integration constants. The quantity Ω0 is
similar to the frequency ω(0), determined in (12). But

now the conditions (13) are not required for the validity
of the used approximations.

The limit of expression (22) for t → −∞ may be
determined with the use of equations 2.10(12–13) of
reference [30]. So the constants c1,2 may be related to the
values of χ0, χ̇0, determining the orientation of molecule
before the field is on:

χ(t) = f (+)(t)χ0 + g(t)τχ̇0,

g(t) =
π

2 cos(πa/2)

[
f (+)(t) sin

πa

2
− f (−)(t)

]
+
[
ψ(1)− ψ

(
1 + a

2

)]
f (+)(t), (23)

ψ(·) is the logarithmic derivative of the Γ -function. The
singularities of the function g(t) at a = 2n+ 1, where n is
an integer, are removable. It can be easily demonstrated
expressing the hypergeometric functions for these values of
a in terms of the Jacobi polynomials which in this case are
reduced to the Legendre polynomials [30]. Together with
the condition (14) this fact allows us to neglect the term
with g(t) in the equation for χ(t). This approximation is
equivalent to neglecting the second term in the right-hand
side of equation (16). The numerical example considered
in the preceding section demonstrates the accuracy of this
approximation.

To derive the distribution function, let us use the re-
lation

Pt(χ) =
1
2

∫ π/2

−π/2
P (χ0)δ(χ(t)− χ)dχ0.

Here χ(t) depends linearly on χ0 according to (23) with
account for the above approximations. Assuming P (χ0) =
(1/2) cosχ0, according to the uniform distribution of the
angle θ0, we obtain:

P (|χ| < χmax) =
π

4χmax
cos

πχ

2χmax
,

P (|χ| > χmax) = 0,

χmax ≡
π

2
|f (+)(t)|. (24)

Equations (24) make clear that the quantity χmax has the
meaning of the distribution width. Let us note a property
of the function (24):

lim
χmax→0

Pt(χ) = δ(χ).

The function f (+)(t) plot is given in Figure 2 determining
χmax for some values of a. It is seen that the restrictions
for |f (+)(t)| appear with the increase of a. However, as
for large values of a the function f (+)(t) oscillates, the
distribution function 〈P (χ)〉 averaged over these oscilla-
tions takes a physical sense. To derive 〈P (χ)〉, we use the
Watson’s asymptotic formulae for the hypergeometric
functions (22) with a � 1, given in [30] (Eq. 2.3(17)).
The result is

f (+)(t) '

√
cosh(t/2τ)

2πΩ0τ

× cos {2Ω0τ arccot[sinh(t/2τ)] + π/4} .
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Fig. 2. The function f (+)(t) (22) graphs, which determines
the distribution of the molecular axes in the case of β < 0, for
different values of the parameter a.

The physical meaning of this expression is simply under-
stood if we introduce the instantaneous frequency of the
molecular axis oscillations relative to the field polarisation
vector:

Ω(t) = Ω0 sech(t/2τ) =
√

2|β|F 2(t)/I.

Then the formula may be rewritten as follows:

f (+)(t) ' −(2πΩ(t)τ)−1/2 cos
(∫ t

−∞
Ω(t′)dt′ + π/4

)
.

(25)

This expression is similar to the approximation used in the
preceding section, since the large values of a correspond
to the inequality (13).

Inserting (25) into (24), we carry out the averaging
over the half-period π/Ω(t) considering Ω(t) to be con-
stant

〈P (|χ| < χ(0)
max)〉 =

1

2χ(0)
max

∫ arccos z

0

dx
cosx

cos
( πz

2 cosx

)
,

χ(0)
max ≡ (8Ω(t)τ/π)−1/2, z ≡ |χ|/χ(0)

max.

By substituting secx = y, we transform this equation to
the form similar to (18):

〈P (|χ| < χ(0)
max)〉 =

L(c)(z)

2χ(0)
max

,

L(c)(z) ≡
∫ 1/z

1

cos(πyz/2)√
y2 − 1

dy. (26)

The function L(c)(z) inside the interval z ∈ (0, 1] is ap-
proximated with the accuracy of ∼ 10% by a simple loga-
rithmic dependence L(c)(z) ' − ln z. Within this accuracy

〈P (|χ| < χ(0)
max)〉 ' 1

2χ(0)
max

ln
χ

(0)
max

|χ| ·

Higher accuracy may be obtained if we resolve the cosine
function of the integrand in (26) in power series. The first

three terms of this resolution give the equation

L(c)(z) '
(

1− π2z2

16
+
π4z4

210

)
ln

1 +
√

1− z2

z

− π2

16

(
1− π2

96
− π2z2

210

)√
1− z2,

which has the accuracy of ∼ 1.75%. Notice the logarithmic
divergence of the averaged distribution function for χ→ 0,
which corresponds to the θ = π/2 plane as written in usual
coordinates. It is also easy to see that for Ω(t)τ � 1 the
distribution function width determined by the value of
χ

(0)
max is ∼ (βS)−1/4, as it took place above.

6 Analysis of experimental data

As it was noted in Introduction, a lot of papers have been
published with experimental data on anisotropy in direc-
tions of the molecular fragments departed due to the ioni-
sation dissociation. Having no possibility to consider here
all the results we shall only draw attention to some exper-
iments related straightforwardly to the model presented.

It was noted in Section 3 that the total width of an-
gular distribution, as obtained in numerical calculations
in the frames of the classical mechanics for the molecule
Cl2, agrees well with the experimental value determined
for this quantity in reference [28]. Nevertheless, a quali-
tative difference exists between the calculations and the
experiment [28]: the lack of the hole in the center of ex-
perimental curve for the angular distribution of the ions
Cl. The minimum in the angular distribution of ions S at
θ = 0, which can be associated with “the hole”, was ob-
served in [15] where the dissociation of the linear molecule
CS2 was investigated (see also Fig. 2 in [16]).

One of the causes of this qualitative discrepancy be-
tween the experimental results [28] and [15,16] can be the
difference between the intensities of the laser radiations:
1015 W/cm2 in [28] and 1013 W/cm2 in [15,16]. According
to (8) the width of the hole decreases with the increase of
the field intensity. The other reason for the difference be-
tween the theory and experiment [28] might be the follow-
ing. Due to the ionisation, the surrounding free electrons
and the nearest molecular ions influence on the orientation
of the molecules, so that the axial symmetry of the prob-
lem is violated. Thus, the angular momentum component
ceases to be an integral of motion, and the central hole of
the distribution function disappears. The variation of the
angular distribution of the ions S+ with variation of the
ionised molecules density from 109 cm−3 to 1011 cm−3 was
observed in experiment [16]. This variation was explained
to be due to the variation of the ion density in the region of
the laser light focusing. A similar effect of non-conserving
angular momentum and its projection was recently stud-
ied theoretically for the Rydberg molecular states in
[32,33]. However this theory cannot be transferred directly
to the case of the molecule alignment in field which is con-
sidered here. The development of such a theory seems to
be an independent problem.
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The existence of the hole does not follow from the use
of the classical mechanics since in quantum calculations
the conservation of the angular momentum component
must provide the same results. The only result of clas-
sical description which is changed taking into account the
spatial quantisation of the molecular rotations, is that the
probability of Mz = 0 value becomes nonzero. This prob-
ability is easily calculated in the limit of M2/2I � kT
[31]:

P (Mz = 0) ' ~√
8IkT

· (27)

In other words, the angular distribution function for the
molecular axes is not zero at θ = 0 but equals to the value
determined by equation (27). E.g. for the Cl2 molecule
we obtain P (Mz = 0) ' 0.01. Thus evidently, the quan-
tum effects do not remove this anomaly in the molecular
axes distribution function, maybe except for the lightest
molecules.

In [16,34] the ionisational dissociation for the
molecules NO2 was investigated. The angular distribution
observed for the O+ ions qualitatively agrees with the re-
sults of this work for the case of β > 0, whereas the re-
sults for the NO+ ions agree with the case of β < 0. This
circumstance may be explained by the assumption that
the O+ and NO+ ions are produced from different elec-
tronic states and the molecule NO2 or its ion remains suf-
ficiently long time in this state, so the molecule alignment
occurs resulting in the observed anisotropy in the direc-
tions of the departed fragments. If it is so, results obtained
in [16,34] demonstrate an important role of excited
electronic states for a laser field-induced alignment of
molecules.

The results obtained qualitatively in this work are
confirmed by recent experiment [35], where the align-
ment of light molecules H2, N2 was observed in a field
with the pulse duration of 50 fs. For the heavy molecules
I2, the anisotropy of the ion departure can be explained
by dependence of the electron tunneling on the orien-
tation of the molecule with respect to the laser beam
polarisation [6,7]. However, the pulse duration of 15 fs
is not enough for alignment even of light molecules [36].

The results presented above make clear that the
anisotrope scattering of fragments in the ionisation dis-
sociation of molecules is complicated substantially. The
author hopes, nevertheless, that the classical theory pre-
sented in this article for the simplest 2-atomic molecules
will help to understand some aspects of this phenomenon.
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